
Optimizing Towards a Globally Consistent Metric

in a Practical AV1 Encoder

Timothy B. Terriberry

July 22, 2020

1 Introduction

The purpose of this work is to define a single, global metric for a practical
video encoder and show how the various sub-problems in the encoder can
be arranged to consistently optimize for that metric. The basic idea of rate-
distortion optimization is well established, and the vast majority of video encoding
implementations rely heavily on its principles. However, there are many details
that must be considered by a practical encoder implementation that are not as
well established.

We take the AV1 format as our primary target for the encoder. Although
some of the discussion will be AV1-specific, many of the principles derived apply
equally well to other formats. Furthermore, we take the Rust AV1 encoder
rav1e as our target implementation. While still in development and not feature
complete, it contains all of the relevant pieces needed for the discussion at
hand. These include things such as the allocation of bits between color planes,
adjustments to account for human perception, boosts applied to certain frames
to improve their usefulness for prediction, and other details specific to AV1.

Many real-world encoder implementations do not handle these details in a
consistent way. Instead, the underlying metric that the individual pieces of the
encoder optimize towards varies depending on the problem being solved. As a
result, the different pieces fight with each other, leading to an overall sub-optimal
result. Unfortunately, once established, such discrepancies become very hard
to displace, as the encoder becomes tuned until the design of the encoder itself
is trapped in a local minimum. Improvements to one piece of the encoder can
lead to overall worse results, as they make that portion more competitive with
the other pieces with which it is in contention. This makes it more difficult to
advance the development of such an encoder.

1

2 The Metric

To define our global metric, we start with a very simple expression of the
rate-distortion cost:

Cvideo , D + λR . (1)

This is the cost our encoder will attempt to minimize over the set of possible
encoded bitstreams. Here, R is the total size of the video in bits, and D is a
block-wise weighted squared error:

D ,
F−1∑
f=0

P−1∑
p=0

⌈
Wp
8

⌉
−1∑

i=0

⌈
Hp
8

⌉
−1∑

j=0

rp,i∑
x=8i

bp,j∑
y=8j

wf,p,i,j |I(f, p, x, y)− Î(f, p, x, y)|2 (2)

Here, f indexes the frames, F is the total number of frames, and p indexes the
color planes in each frame, of which there are P per frame. Similarly, Wp and
Hp are the width and height of the pth plane in each frame, indexed by x and y.

I corresponds to the input image sequence to be encoded, and Î corresponds to
the encoded image sequence. Each 8× 8 block of pixels is weighted by a weight
wf,p,i,j , where i and j are the indices of the block, rp,i , min(8i + 7,Wp − 1)

is the right edge of the block, and bp,j , min(8j + 7, Hp − 1) is the bottom
edge of the block. The exact definition of these weights will incorporate many
components designed to improve the visual quality of the video compared to a
naive optimization for mean-squared error. We will elaborate on the components
in turn below.

The choice of 8× 8 blocks is a pragmatic one. They should be small enough
to allow a meaningful level of control, but large enough to allow efficient imple-
mentation. We find that in the presence of quantization noise, we may need
8× 8 pixels to reliably estimate local texture or edge directionality or activity in
a region. Blocks of this size also provide a 64x reduction in memory bandwidth
compared to using per-pixel weights and allow for relatively efficient SIMD.

Finally, we take λ as the master parameter that drives the trade off between
quality and bitrate. Importantly, λ is a single, fixed value. Many other works
take λ as a free parameter and make adjustments to it in order to model various
effects [AN11, ZYLS10]. Taken in isolation, scaling λ is the same as scaling
distortion, with

minwD + λR (3)

and
minD + w′λR (4)

yielding the same optimum if w′ = 1
w . However, as soon as the distortion for

two different terms is scaled in different ways, this equivalence breaks down.

minw1D1 + w2D2 + λ(R1 +R2) (5)

does not in general yield the same optimum as

minD1 +D2 + w′1λR1 + w′2λR2 (6)

2

−4

−2

0

2

4

6

8

1 31 63 95 127 159 191 223 255

lo
g
2
Q
−

(b
it

-d
ep

th
−

8
)

Quantizer Index

8-bit AC
10-bit AC
12-bit AC
8-bit DC

10-bit DC
12-bit DC

Figure 1: Quantizer vs. quantizer index, logarithmtic scale

for any choice of w′1 or w′2. There is no way to make these equivalent unless
w1 = w2. If the bits that contribute to R1 only impact D1 and the bits that
contribute R2 only impact D2, then there is no dependency between the two
sub-problems, and equivalence is restored. But given the extensive use of
prediction, context modeling, and other factors, such sub-problems are rarely
truly independent.

So which is the proper approach? We argue that there are many perceptual
reasons that one would scale distortion: differences in some pixels are more
visible to a human observer than differences in others. However, bits are always
bits, and there does not seem to be a reasonable justification for saying that
some bits cost more than other bits.

2.1 Quantizer Selection

In AV1, quantizers are table-driven. A quantizer index can have one of 256
different values, with 0 representing no quantization (lossless coding), and the rest
representing a quantizer chosen from a look-up table. There are separate tables
for DC and AC coefficients, with all AC coefficients using the same quantizer
by default. These are also separate for 10- and 12-bit video, i.e., these are not
simply scaled versions of the table for 8-bit video (or vice versa). VP9 used the
same tables. AV1 adopted them without modification.

For 8-bit video, the AC quantizers for quantizer indices from 1 to 95 form a

3

0

2

4

6

8

10

12

14

1 31 63 95

Q
·2

8
−
b
it
-d

e
p
th

Quantizer Index

8-bit AC
8-bit DC

10-bit AC
10-bit DC
12-bit AC
12-bit DC

Figure 2: Quantizer vs. quantizer index, linear scale

linear ramp from 1.0 to 12.751, as seen in Figure 2. The primary reason for this
appears to be that they are stored in the table in Q3 resolution (i.e., in fixed-point
with 3 fractional bits), and over this region the difference in consecutive values
is 1

8 (i.e., the minimum representable step size). Beyond quantizer index 95,
the quantizers begin incrementing by 1

4 , and then later by 3
8 , etc., such that

they grow roughly exponentially, doubling every 36 to 42 steps (i.e., slightly
more than 4 times). Figure 1 shows that this region forms an approximately
straight line when plotted on a logarithmic scale. These steps look as if they
were manually constructed, and not as if they were simply the result of rounding
an analytic function.

The DC quantizers are universally smaller than the corresponding AC quan-
tizer (except at 1.0), and do not follow the same consistent patterns. The values
in the exponential region instead appear to be fit to data in some fashion, possibly
in an attempt to compensate for the tendency of DC coefficients to use the lion’s
share of the bits at low bitrates, but the reasoning is not documented anywhere
to the author’s knowledge. The ratio between the quantizers varies, with the DC
quantizer on average being 0.767 times the AC quantizer. Because of the limited
precision of the table, this means that there are a number of entries where the
step from the previous entry is 0 (i.e., the previous entry is repeated).

For 10- and 12-bit, no longer restricted by the resolution of the table, the
AC quantizers start off from a value slightly above 1.0 and grow quadratically

1For the purposes of discussion, all raw quantizers in the text are scaled assuming transforms
with a unit norm. AV1’s actual transforms have varying scales depending on the block size.

4

0

0.2

0.4

0.6

0.8

1

1 31 63 95 127 159 191 223 255

Q
D

C

Q
A
C

Quantizer Index

8-bit
10-bit
12-bit

Figure 3: Ratio between DC and AC quantizers

for the first seventeen or so entries before flattening out into a roughly linear
region through index 95. The slope does not correspond to that of the 8-bit
values, which is likely to compensate for the fact that they start from a different
place but end up in very similar places. After that, the exponential section
follows the 8-bit table very closely, with values typically between 13

8 (at the
start) to 1

8 (at the end) smaller than the corresponding 8-bit table scaled up by
16. The discrepancies are large enough to show that the 8-bit values are not
simply rounded version of the 12-bit values, but close enough that they clearly
are related. They have the same weird discretization of the step sizes at the
start. That is, the difference between entries 95 and 96 is roughly double that
of entries 94 and 95, despite having ample precision to make this unnecessary.
The DC quantizer values appear to be selected to maintain the same ratio
with the AC quantizer values at all bit depths, with some notable differences
at small quantizers that can be explained by discretization. The effect of the
limited precision for the 8-bit values are particularly pronounced, as illustrated
in Figure 3.

2.1.1 Flat Quantization

Consider first the simple case where the distortion is not weighted. Under the
assumption that residual coefficients are Laplace distributed the optimal choice

5

of λ for a given quantizer, Q, is

λ =
log 2

6
Q2 . (7)

Since the DC and AC quantizers for a given quantizer index differ, it is not
obvious how to select a single value of λ suitable for rate-distortion optimization
given a quantizer index.

We will return to this problem momentarily, but first consider the opposite
problem. Although it is not optimal visually, it is important to be able to
configure an encoder to use a flat quantizer (i.e., to quantize all coefficients by
the same value), if only for benchmark and testing purposes. We will extend
things to non-flat quantization in Section 2.5. A single frame can select different
quantization indices for DC and AC in each of the color planes. If we start
instead from λ, we can derive the optimal choice of quantizer as

Qopt ,

√
6

log 2
λ . (8)

It is not in general possible to get a perfectly flat quantizer, as not every value
is available in the tables. We can however search the tables for the value closest
to Qopt for both DC and AC coefficients.

In order to define ‘closest’, we use the distance in the log domain. In the limit
at high rates, a linear step of quantizer in the log domain leads to a linear change
in bitrate, with an increase rate of one bit per pixel each time the quantizer is
halved. Therefore the closest quantizer in the log domain should yield a bitrate
closest to the optimal rate for λ. Equivalently, if we know Qopt lies between
table entries Qqi and Qqi+1, we can compute

logQthresh ,
1

2
(logQqi + logQqi+1) , (9)

2 logQthresh = logQqi + logQqi+1, (10)

Q2
thresh = QqiQqi+1 (11)

and choose qi if Q2
opt < Q2

thresh and qi+ 1 otherwise. This allows the search to
be implemented in an exact manner with simple arithmetic.

Specifying λ and specifying a quantizer are equivalent, as eqs. 7 and 8 show.
However, it may be more intuitive for users to specify the target encoder quality
with an abstract quantizer index whose behavior is closer to linear in bitrate.
Since an AV1 quantizer index maps to two different quantizers, which do we
use to derive λ? The tables clearly seem designed around the AC quantizers,
so it would be natural to select them. However, because the DC quantizers
are generally smaller, they cannot extend to the full range of values achievable
by the AC quantizers. For very large quantizer indices, the deviation from flat
quantization becomes quite pronounced, with all quantizer indices from 239
on having an AC quantizer larger than the largest possible DC quantizer. In
addition, deriving λ from the AC quantizer means that all of the error due to

6

0

50

100

150

200

250

1 31 63 95 127 159 191 223 255

A
ct

u
al

Q
u
an

ti
ze

r
In

d
ex

API Quantizer Index

8-bit DC qi
8-bit AC qi

Figure 4: Actual quantization indices used for a given API quantization index
in rav1e for 8-bit video. Beyond an API quantization index of 80, we are no
longer always able to find a perfect match for the AC quantizer in the DC table.
At an API quantization index of 239, the DC quantizer index saturates at 255.
A larger λ and slightly increased AC quantizer will continue to be able to lower
the bitrate, but not as effectively as a larger DC quantizer. The largest AC
quantizer index in actual use with our approach is 247.

the discretization of the tables shows up in the DC quantizer. This can lead
to suboptimal results at low rates, where often the DC coefficient is the only
non-zero coefficient in a block after quantization, but RDO operates with a
λ tuned for a (different) AC quantizer. Conversely, for 8-bit video, the fact
that multiple quantizer indices map to the same actual DC quantizer makes the
DC quantizers less than ideal, especially if the encoder wishes to use multiple
quantizers derived as offsets from the base quantizer index.

As a compromise, we first take the AC quantizer corresponding to a given
quantizer index, and find the DC quantizer that is closest to it in the table. We
then compute Qopt as the geometric average of these quantizers, and use that
to derive λ, as Figure 5 illustrates. Finally, we search both the AC and DC
quantizer tables for the quantizers closest to Qopt, since both may differ from
the originally selected entries, as Figure 4 shows. This distributes the deviation
from a perfectly flat quantizer due to the limited table entries available to both
the DC and AC coefficients. This is more easily seen in Figure 6.

7

−4

−2

0

2

4

6

8

10

12

14

1 31 63 95 127 159 191 223 255

lo
g
2
λ

API Quantization Index

λAC

λDC

Actual λ

Figure 5: log2 λ vs. API quantization index in rav1e for 8-bit video. Ideally
this should be linear, but that would give up useful resolution in the tables for
quantizer indices less than 95. The section for quantizer indices greater than
239 is still linear, just with a reduced slope.

2.2 Averaging Quantizers

Once we start adding weights to our distortion measurements, we will also
want to use different quantizers for different parts of a frame. In order to
support something other than completely uniform quantization of all transform
coefficients for all color planes, we need some way to tie our single λ parameter
to a collection of different quantizers. This is necessary because it is often not
possible to tie particular bits in the coded sequence to particular quantized
transform coefficients. For example, the bits spent signaling a a motion vector
affect all of the color planes. The bits spent signaling a partition split decision
may affect multiple blocks, which in turn might have different weights, and so
on.

We approach the problem by considering the entropy of the quantized
transform coefficients. Suppose that the transform coefficients follow a zero-
mean Laplacian distribution, a choice which balances model simplicity and
fidelity [RG83,BCC+92],

p(x) =
1

2b
e−

|x|
b (12)

b ,

√
σ2

2
, (13)

8

10.6

10.8

11

11.2

11.4

11.6

11.8

12

12.2

223 239 255

lo
g
2
λ

API Quantization Index

λAC

λDC

Actual λ

Figure 6: Close-up of Figure 5 for large quantizer indices.

where σ2 is the variance. Let Pn be the probability that a given coefficient
quantizes to the (signed) magnitude k with a given quantizer Q:

Pk =

{∫ (1−γ)Q
−(1−γ)Q p(x)dx, k = 0∫ (k+1−γ)Q
(k−γ)Q p(x)dx, k 6= 0 .

(14)

where γ is a rounding bias between 0 and 1. Expanding the integrals yields

Pk =

{
1− e−(1−γ)

Q
b , k = 0

1
2e
−(|k|−γ+1)Q

b

(
e

Q
b − 1

)
, k 6= 0 .

(15)

Therefore the entropy of the resulting quantized coefficients is

H(Q, b) = −
∞∑

k=−∞

Pk log2 Pk (16)

= −
(

1− e−(1−γ)
Q
b

)
log2

(
1− e−(1−γ)

Q
2

)
− 2e−(1−γ)

Q
b

[
log2

(
1− e−

Q
b

)
+

Q

b ln 2

(
1

2
+

1

1− e−Q
b

)
− 1

]
.

(17)

This expression is very complicated, but the important observation is that it

is characterized entirely by Q
b , or equivalently, by σ2

Q2 . At low rates, this entropy

9

is approximately linear in σ2

Q2 , and at high rates it is approximately logarithmic in
σ2

Q2 [RCN96]. In both cases, as we pool together groups of quantized coefficients

with different variances and quantizers, the average value of σ2

Q2 is an important
quantity that should be preserved.

Suppose we have multiple groups of transform coefficients, of size Ni and
with variances σ2

i , that will be quantized with different quantizers Qi. We can
consider them to be drawn from a single Laplacian distribution with a single
pooled variance

σ2
pooled =

∑
iNiσ

2
i∑

iNi
. (18)

This is justified since the theoretical explanation for the Laplacian shape of the
transform coefficient distribution in the first place is as the result of pooling
coefficients with varying variances [LG00]. Now, we can represent the quantizers
used by each group by a single, average quantizer Q̄, such that

σ2
pooled

Q̄2
=

∑
iNi

σ2
i

Q2
i∑

iNi
, (19)

which yields

Q̄ =

√√√√∑iNiσ
2
i∑

i
Niσ2

i

Q2
i

. (20)

In other words, Q̄2 is just the harmonic mean of the individual Q2
i values,

weighted by the variance of each group, σ2
i . We can use this “average quantizer”

to select a value of λ via eq. 7. Or, if we have a way of deriving the Qi values
from Q̄, then we can select an appropriate Q̄ from λ via eq. 8. We give an
example of the latter in the next section.

2.2.1 Averaging Weights

It is also informative to turn things around to look at them from the perspective
of the weights we are applying to the distortion. Consider a set of N non-negative
weights wi, which could represent the block weights in eq. 2, or per-coefficient
weights, or any other form of weighting. Being able to average these weights
together is also useful. For example, one might apply a transform that covers
several blocks with different weights on their pixel-domain distortions. How
should the distortion of the transform coefficients be weighted? It is possible
to apply an inverse transform and measure distortion in the pixel domain for
each possible rounding direction of each transform coefficient, but this is quite
expensive, and the choices are not independent. Similarly, one might wish to
know the average weight over an entire frame, in order to pick a base quantizer
to work from (even if individual blocks will use varying quantizers).

10

Assume that each weight wi corresponds to a quantizer Qi, which can be
chosen independently for the portion of the R-D cost corresponding to wi,

Ci = wiD + λR . (21)

Then by eq. 8, the optimal choice for Qi is

Qi =

√
6

log 2

λ

wi
. (22)

Define a base quantizer

Qbase ,

√
6

log 2
λ (23)

as the optimal choice for the cost with an unweighted λ, so that

Qi =
Qbase√
wi

. (24)

The exact value of Qbase (and thus λ) is mostly immaterial here, we just use it
to simplify the expressions that follow. The important thing is to capture the
effect weighting the distortion has on the choice of quantizer, as expressed in
eq. 24.

Now suppose we want to define an “average weight”, w̄, analgous to our
“average quantizer”, Q̄, such that

Q̄ =
Qbase√
w̄

. (25)

Consider eq. 20, and assume that the size of each group, Ni, and the variances
of the prediction residual, σi, are equal for all i, so they can be dropped for
simplicity. Then plugging in eqs. 24 and 25 and solving for w̄ yields

Q̄ =

√
N∑
i

1
Q2

i

(26)

Qbase√
w̄

=

√
N∑
i

wi

Q2
base

(27)

Q2
base

w̄
=

N∑
i

wi

Q2
base

(28)

Q2
base

w̄
=

N
1

Q2
base

∑
i wi

(29)

1

w̄
=

N∑
i wi

(30)

w̄ =

∑
i wi
N

. (31)

That is, the “average weight” that is consistent with our theory for averaging
quantizers really is just the normal arithmetic mean.

11

2.3 Color

The perceptual impact of the chroma planes is not equal to that of the luma
planes, and the corresponding weight of each plane must be tuned. The tuning
of the balance between chroma and luma in rav1e has been described previ-
ously [BBM+19], but is reviewed here for completeness. At the threshold of
perception, the eye is more sensitive to changes in luma than changes in chroma,
and we can use a coarser quantizer for chroma. At low bitrates (far from the
threshold of perception), luma loses most of its high-frequency components,
making chroma differences more noticeable. At these rates chroma requires a
finer quantizer than luma.

We use the CIEDE2000 metric [CIE01,SWD05] to evaluate the impact of
coding artifacts in all three color planes on color quality. This metric is based
on the CIEL*a*b* color space [CIE19] with corrections to improve perceptual
uniformity. However, visual inspection shows that optimizing the luma-chroma
balance solely for CIEDE2000 causes a noticable loss in luma details, which
is confirmed by a large drop in luma PSNR. Therefore, we tune rav1e for the
(equally-weighted) sum of CIEDE2000 and luma PSNR, choosing parameters
such that the first derivatives of BD-rate [Bjø01] with each metric have equal
(and opposite) magnitudes. This causes only marginal losses in CIEDE2000 at
the extremums, but significantly reduces the losses in luma PSNR. These tunings
agree very closely with earlier tuning performed for Daala [daa], a completely
different video codec with very different perceptual properties, suggesting they
are relatively robust to other aspects of a codec or encoder implementation.

The color plane weights are fixed at high bitrates and scaled linearly with
λ. We have not experimentally verified that a model that is linear in λ accu-
rately describes the change in weights required to jointly minimize BD-rate for
CIEDE2000 and luma PSNR across the full bitrate range.

In order to determine the quantizers for an overall λ (or, equivalently, the
overall λ for a given set of quantizers, c.f. Section 2.2), we need to know the the
average variance of the prediction residual in each color plane. We encode four
720p sequences (ducks take off, in to tree, old town cross, and park joy),
chosen because we have 4:2:0, 4:2:2, and 4:4:4 versions of each of them. We
encode at all API quantization indices 1 . . . 239 with the default speed level. We
use low-latency mode (no bi-predicted frames), we disable temporal RDO, and
optimize for PSNR, to ensure constant quantizers. During each encode, we collect
the sum and sum of squares of the prediction residual in each partition, and
record only the final encoding parameters selected by RDO (i.e., the prediction
mode that is actually used to encode the partition). These sums are used to
compute the variance for the DC and AC coefficients of each color plane.

Some preliminary graphs follow. Figure 7 shows the absolute variances of
each component for partitions encoded in inter modes, plotted against the log
of the quantizer. Figure 8 shows the relative variances of each component for
partitions encoded in inter modes, plotted against the log of the luma quantizer
(the corresponding chroma quantizers vary, as described above). This data needs
to be reprocessed, as the current mechanism for averaging the variance per

12

1

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9

lo
g
σ

logQ

Y ′ Inter DC 4:2:0
Y ′ Inter DC 4:2:2
Y ′ Inter DC 4:4:4
Y ′ Inter AC 4:2:0
Y ′ Inter AC 4:2:2
Y ′ Inter AC 4:4:4
Cb Inter DC 4:2:0
Cb Inter DC 4:2:2
Cb Inter DC 4:4:4
Cb Inter AC 4:2:0
Cb Inter AC 4:2:2
Cb Inter AC 4:4:4
Cr Inter DC 4:2:0
Cr Inter DC 4:2:2
Cr Inter DC 4:4:4
Cr Inter AC 4:2:0
Cr Inter AC 4:2:2
Cr Inter AC 4:4:4

Figure 7: Color plane variances (Inter modes).

quantizer across different encodes is subtly broken. Figure 9 shows the absolute
variances of each component for 4:2:0 partitions encoded in intra modes, plotted
against the quantizer. This data is clearly broken. At least two issues with the
current data collection approach are suspected of contributing to this: the same
averaging issue described above, and the fact that the statistics of intra blocks
in intra-only frames are very different from intra blocks in inter frames, due to
the fact that in the latter they must compete against other inter modes in order
to be selected.

2.4 Adaptive Quantization

2.4.1 Activity Masking

2.4.2 Temporal RDO

2.5 Quantization Matrices

2.6 Rate Control

References

[AN11] Cheolhong An and Truong Q. Nguyen. Adaptive Lagrange multiplier
selection using classification-maximization and its application to

13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

R
el

a
ti

ve
va

ri
a
n
ce

logQY ′

Y’ Inter AC 4:2:0
Y’ Inter AC 4:2:2
Y’ Inter AC 4:4:4
Cb Inter AC 4:2:0
Cb Inter AC 4:2:2
Cb Inter AC 4:4:4
Cr Inter AC 4:2:0
Cr Inter AC 4:2:2
Cr Inter AC 4:4:4

Figure 8: Relative plane variances (Inter modes).

chroma QP offset decision. IEEE Transactions on Circuits and
Systems for Video Technology, 21(6):783–791, June 2011.

[BBM+19] Luca Barbato, David M. Barr, Ivan Molodetskikh, Christopher Mon-
tomery, S. P. Shreevari, Raphaël A. Zumer, and Nathan E. Egge.
Rust AV1 encoder (rav1e) project. In Proceedings of the SPIE: Appli-
cations of Digital Image Processing XLII (ADIP’19), volume 11137,
San Diego, September 2019.

[BCC+92] Fabio L. Bellifemine, A. Capellino, Antonio Chimienti, Romualdo
Picco, and Remo Ponti. Statiscial analysis of the 2D-DCT coeffi-
cients of the differential signal for images. Signal Processing: Image
Communications, 4(6):477–488, November 1992.

[Bjø01] Gisle Bjøntegaard. Calculation of average PSNR differences between
RD curves. Technical Report VCEG-M33, ITU-T SG16/Q6, Austin,
TX, April 2001.

[CIE01] Improvement to industrial color-difference evaluation. Technical
Report 142-2001, Commission International de l’Éclairage, Vienna,
2001.

14

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160 180

σ

Q

Y’ Intra DC 4:2:0
Y’ Intra AC 4:2:0

Cb Intra DC 4:2:0
Cb Intra AC 4:2:0
Cr Intra DC 4:2:0
Cr Intra AC 4:2:0

Figure 9: Color plane variances (Intra 4:2:0).

[CIE19] Colorimetry — part 4: CIE L*a*b* color space. Technical Report
ISO/CIE 11664-4:2019(E), Commission International de l’Éclairage,
2019.

[daa] Daala website. https://xiph.org/daala/.

[LG00] Edmund Y. Lam and Joseph W. Goodman. A mathematical analysis
of the DCT coefficient distributions for images. IEEE Transactions
on Image Processing, 9(10):1661–1666, October 2000.

[RCN96] Jordi Ribas-Corbera and David L. Neuhoff. On the optimal motion
vector accuracy for block-based motion-compensated video coders.
In Digital Video Compression: Algorithms and Technologies, volume
2268 of Proceedings of the SPIE, San Jose, CA, March 1996.

[RG83] Randall C. Reiningek and Jerry D. Gibson. Distributions of the
two-dimensional DCT coefficients for images. IEEE Transactions on
Communications, 31(6):835–839, June 1983.

[SWD05] Gaurav Sharma, Wencheng Wu, and Edul N. Dalal. The CIEDE2000
color-difference formula: Implementation notes, supplementary test
data, and mathematical observations. Color Research and Applica-
tion, 30(1):21–30, February 2005.

[ZYLS10] Jun Zhang, Xiaoquan Yi, Nam Ling, and Weijia Shang. Context
adaptive Lagrange multiplier (CALM) for rate-distortion optimal

15

https://xiph.org/daala/

motion estimation in video coding. IEEE Transactions on Circuits
and Systems for Video Technology, 20(6):820–828, June 2010.

16

	Introduction
	The Metric
	Quantizer Selection
	Flat Quantization

	Averaging Quantizers
	Averaging Weights

	Color
	Adaptive Quantization
	Activity Masking
	Temporal RDO

	Quantization Matrices
	Rate Control

