

Presentation: Latest Technical and Business Progress with AV1

Nathan Egge <<u>negge@mozilla.com</u>> NAB Streaming Summit - April 8, 2019 Slides: <u>https://xiph.org/~negge/NAB2019.pdf</u>

Mozilla at NAB 2018

Firefox Demo with Bitmovin [1]

Interview with Jan Ozer of Streaming Media [2]

[1] https://twitter.com/bitmovin/status/983810754003398656

[2] https://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=124396

Concerns We Heard at NAB 2018

- "The bitstream isn't even frozen yet"
- "We need broad deployment of hardware decoders before adoption"
- "The reference encoder is too slow to be usable"
- "AV1 is not much better than HEVC"
- "There is no support for AV1 in XXX"
- "The broadcast space is slow to adopt new things"

One Doesn't Just Freeze the AV1 Bitstream

- Draft specification at NAB 2018 (2018-Mar-28)
 - Testing showed ~30% better than VP9
 - No new major coding tools added
- Engineering review period
 - Machine verification of spec document
 - Correct normative errors
- Tag release v1.0.0 (2018-Jun-25)

Developed by	Alliance for Open Media
Initial release March 28, 2018; 12 months ago Type of format Compressed video	
Extended from VP9 Daala Thor	
Open format? Yes	
Website	aomediacodec.github.io/av1- spec&

One Doesn't Just Freeze the AV1 Bitstream

- Draft specification at NAB 2018 (2018-Mar-28)
 - Testing showed ~30% better than VP9
 - No new major coding tools added
- Engineering review period
 - Machine verification of spec document
 - Correct normative errors
- Tag release v1.0.0 (2018-Jun-25)
- Issues found by implementers
 - Additional normative corrections
- Tag release v1.0.0-errata1 (2019-Jan-08)

Developed by	Alliance for Open Media		
Initial release	28 March 2018; 12 months ago		
Latest release	1.0.0 Errata 1 ^[1] (January 9, 2019; 2 months ago)		
Type of format Video compression format Contained by Matroska WebM ISOBMFF RTP (WebRTC) Extended from VP10 Daala Thor			
		Open format?	Yes
		Website	aomediacodec.github.io/av1- spec/av1-spec.pdf 🐊

Concerns We Heard at NAB 2018

- "The bitstream isn't even frozen yet"
- "We need broad deployment of hardware decoders before adoption"
- "The reference encoder is too slow to be usable"
- "AV1 is not much better than HEVC"
- "There is no support for AV1 in XXX"
- "The broadcast space is slow to adopt new things"

AV1 (libaom) decoding is slow (July 7, 2018)

AV1 vs VP9 vs AVC (h.264) vs HEVC (h.265): Part IV - Decode

- July 07, 2018

Codeo	Decode			
Codec	real time	vs x264	CPU time	vs x264
x264	0.409s	1:1	1.059s	1:1
x265	0.980s	2.40:1	1.813s	1.71:1
VP9	0.761s	1.86:1	1.253s	1.18:1
AV1	4.178s	10.22:1	3.993s	3.77:1

Codeo	Decode			
Codec	real time	vs x264	CPU time	vs x264
x264	0.631s	1:1	1.856s	1:1
x265	1.190s	1.89:1	3.024s	1.63:1
VP9	0.780s	1.24:1	2.095s	1.13:1
AV1	11.750s	18.62:1	11.703s	6.31:1

"At of [sic] June 2018, the AV1 decoder can only decode in a **single thread**. Decoders for H.264, H265, and VP9 utilize multi-threads."

"To decode the files encoded with AV1, the CPU time was approximately **3.5-6x longer** than that to decode files encoded with x264. This means that it required **3.5-6x more CPU** power to decode files encoded with AV1."

Optimized Decoding

- AV1 reference (libaom) is not designed for decoder performance
 Large binary, too much memory, missing SIMD, research codebase
- AOMedia asked for proposals for an open-source optimized decoder

Requirements:

- + Open Source (MIT/BSD licensed, or similar)
- + Full SIMD for x86-32, x86-64, ARMv7, and ARMv8.
- + Multi-threaded
- + Bit-identical decoding of all features vs. libaom

Optimized Decoding

- AV1 reference (libaom) is not designed for decoder performance
 Large binary, too much memory, missing SIMD, research codebase
- AOMedia asked for proposals for an open-source optimized decoder

Requirements:

- + Open Source (MIT/BSD licensed, or similar)
- + Full SIMD for x86-32, x86-64, ARMv7, and ARMv8.
- + Multi-threaded
- + Bit-identical decoding of all features vs. libaom
- French non-profit VideoLAN selected
- Dav1d is an AV1 Decoder (dav1d) project is born

dav1d Project

VideoLAN / FFmpeg / Two Orioles

Goals

- Small binary size
- Low CPU utilization
- Multi-threaded
- Cross-platform

Implementation

- C99 (no VLA, complex, GNU extensions)
- ASM (no intrinsics, ASM files like FFmpeg)

License

• BSD (like opus, libvorbis, etc.)

dav1d Project

VideoLAN / FFmpeg / Two Orioles

Goals

- Small binary size
- Low CPU utilization
- Multi-threaded
- Cross-platform

Implementation

- C99 (no VLA, complex, GNU extensions)
- ASM (no intrinsics, ASM files like FFmpeg)

License

• BSD (like opus, libvorbis, etc.)

Project Timeline:

2018-Jun-29: AOM decoder CfP

dav1d Project

VideoLAN / FFmpeg / Two Orioles

Goals

- Small binary size
- Low CPU utilization
- Multi-threaded
- Cross-platform

Implementation

- C99 (no VLA, complex, GNU extensions)
- ASM (no intrinsics, ASM files like FFmpeg)

License

• BSD (like opus, libvorbis, etc.)

Project Timeline:

2018-Jun-29: AOM decoder CfP 2018-Jul-13: Deadline to submit

dav1d Project

VideoLAN / FFmpeg / Two Orioles

Goals

- Small binary size
- Low CPU utilization
- Multi-threaded
- Cross-platform

Implementation

- C99 (no VLA, complex, GNU extensions)
- ASM (no intrinsics, ASM files like FFmpeg)

License

• BSD (like opus, libvorbis, etc.)

2018-Jun-29:	AOM decoder CfP
2018-Jul-13:	Deadline to submit
2018-Jul-13:	VideoLAN selected

dav1d Project

VideoLAN / FFmpeg / Two Orioles

Goals

- Small binary size
- Low CPU utilization
- Multi-threaded
- Cross-platform

Implementation

- C99 (no VLA, complex, GNU extensions)
- ASM (no intrinsics, ASM files like FFmpeg)

License

• BSD (like opus, libvorbis, etc.)

Project Timeline:

2018-Jun-29: AOM decoder CfP 2018-Jul-13: Deadline to submit 2018-Jul-13: VideoLAN selected 2018-Aug-22: dav1d contract executed

dav1d Project

VideoLAN / FFmpeg / Two Orioles

Goals

- Small binary size
- Low CPU utilization
- Multi-threaded
- Cross-platform

Implementation

- C99 (no VLA, complex, GNU extensions)
- ASM (no intrinsics, ASM files like FFmpeg)

License

• BSD (like opus, libvorbis, etc.)

Project Timeline:

2018-Jun-29: AOM decoder CfP 2018-Jul-13: Deadline to submit 2018-Jul-13: VideoLAN selected 2018-Aug-22: dav1d contract executed 2018-Sep-22: dav1d open sourced @ VDD 2018

dav1d Project

VideoLAN / FFmpeg / Two Orioles

Goals

- Small binary size
- Low CPU utilization
- Multi-threaded
- Cross-platform

Implementation

- C99 (no VLA, complex, GNU extensions)
- ASM (no intrinsics, ASM files like FFmpeg)

License

• BSD (like opus, libvorbis, etc.)

2018-Jun-29:	AOM decoder CfP
2018-Jul-13:	Deadline to submit
2018-Jul-13:	VideoLAN selected
2018-Aug-22:	dav1d contract executed
2018-Sep-22:	dav1d open sourced @ VDD 2018
2018-Nov-11:	dav1d in Firefox Nightly

dav1d Project

VideoLAN / FFmpeg / Two Orioles

Goals

- Small binary size
- Low CPU utilization
- Multi-threaded
- Cross-platform

Implementation

- C99 (no VLA, complex, GNU extensions)
- ASM (no intrinsics, ASM files like FFmpeg)

License

• BSD (like opus, libvorbis, etc.)

2018-Jun-29:	AOM decoder CfP
2018-Jul-13:	Deadline to submit
2018-Jul-13:	VideoLAN selected
2018-Aug-22:	dav1d contract executed
2018-Sep-22:	dav1d open sourced @ VDD 2018
2018-Nov-11:	dav1d in Firefox Nightly
2018-Dec-11:	dav1d-0.1.0 Release

dav1d Project

VideoLAN / FFmpeg / Two Orioles

Goals

- Small binary size
- Low CPU utilization
- Multi-threaded
- Cross-platform

Implementation

- C99 (no VLA, complex, GNU extensions)
- ASM (no intrinsics, ASM files like FFmpeg)

License

• BSD (like opus, libvorbis, etc.)

2018-Jun-29:	AOM decoder CfP
2018-Jul-13:	Deadline to submit
2018-Jul-13:	VideoLAN selected
2018-Aug-22:	dav1d contract executed
2018-Sep-22:	dav1d open sourced @ VDD 2018
2018-Nov-11:	dav1d in Firefox Nightly
2018-Dec-11:	dav1d-0.1.0 Release
2018-Dec-27:	dav1d in vlc-3.0.5

dav1d Project

VideoLAN / FFmpeg / Two Orioles

Goals

- Small binary size
- Low CPU utilization
- Multi-threaded
- Cross-platform

Implementation

- C99 (no VLA, complex, GNU extensions)
- ASM (no intrinsics, ASM files like FFmpeg)

License

• BSD (like opus, libvorbis, etc.)

2018-Jun-29:	AOM decoder CfP
2018-Jul-13:	Deadline to submit
2018-Jul-13:	VideoLAN selected
2018-Aug-22:	dav1d contract executed
2018-Sep-22:	dav1d open sourced @ VDD 2018
2018-Nov-11:	dav1d in Firefox Nightly
2018-Dec-11:	dav1d-0.1.0 Release
2018-Dec-27:	dav1d in vlc-3.0.5
2019-Mar-13:	dav1d-0.2.1 Release

dav1d Project

VideoLAN / FFmpeg / Two Orioles

Goals

- Small binary size
- Low CPU utilization
- Multi-threaded
- Cross-platform

Implementation

- C99 (no VLA, complex, GNU extensions)
- ASM (no intrinsics, ASM files like FFmpeg)

License

• BSD (like opus, libvorbis, etc.)

2018-Jun-29:	AOM decoder CfP
2018-Jul-13:	Deadline to submit
2018-Jul-13:	VideoLAN selected
2018-Aug-22:	dav1d contract executed
2018-Sep-22:	dav1d open sourced @ VDD 2018
2018-Nov-11:	dav1d in Firefox Nightly
2018-Dec-11:	dav1d-0.1.0 Release
2018-Dec-27:	dav1d in vlc-3.0.5
2019-Mar-13:	dav1d-0.2.1 Release
2019-Mar-29:	dav1d in Chrome Canary

dav1d-0.1.0 Release (December 11, 2018)

[1] <u>http://www.jbkempf.com/blog/post/2018/First-release-of-dav1d</u>

dav1d-0.2.1 Release (March 13, 2019)

22

dav1d Can Decode 4k on Mobile(*)

1080p decode speeds in FPS

(*) If you are Apple

dav1d is Awesome

- dav1d is very fast
 - 2x 5x faster than libaom
 - \circ "Instead of a C library with SIMD optimization, dav1d is an ASM library with C compatibility"
- dav1d is scalable
- dav1d is production ready
 - BSD-2 License means you can fork for commercial purposes
- dav1d will soon be everywhere
 - Firefox 67 (2019-May-07)
 - Chromium 74 [1] (week of 2019-Apr-23)
 - Android Q ???
- dav1d should run everywhere
 - Need support somewhere they can help
- dav1d is open source and community driven

1] <u>https://storage.googleapis.com/chromium-find-releases-static/ede.html#ede43457</u>

Concerns We Heard at NAB 2018

- <u>"The bitstream isn't even frozen yet"</u>
- "We need broad deployment of hardware decoders before adoption"
- "The reference encoder is too slow to be usable"
- "AV1 is not much better than HEVC"
- "There is no support for AV1 in XXX"
- "The broadcast space is slow to adopt new things"

Jan Ozer on AV1 Encoding (January 30, 2018)

January 30, 2018 By Jan Ozer Contributing Editor Online Video News

AV1 Beats VP9 and HEVC on Quality, if You've Got Time, says Moscow State

[1] https://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=122945

Facebook Study (April 2018)

"Our testing shows AV1 surpasses its stated goal of 30% better compression than VP9, and achieves gains of **50.3%, 46.2%** and **34.0%**, compared to x264 main profile, x264 high profile and libvpx-vp9, respectively."

"However, AV1 saw increases in encoding computational complexity compared with x264 main, x264 high and libvpx-vp9 for ABR mode. Encoding run time was **9226.4x, 8139.2x** and **667.1x** greater, respectively"

[1] https://code.fb.com/video-engineering/av1-beats-x264-and-libvpx-vp9-in-practical-use-case/

Jan Ozer on AV1 Encoding (August 31, 2018)

August 31, 2018 By Jan Ozer Contributing Editor Featured Articles

AV1: A First Look

	Encoding Time (seconds)	Times Real Time
AV1	226,080	45,216
x265	289	58
LibVPx	226	45
x264	18	4

[1] https://www.streamingmedia.com/Articles/Editorial/Featured-Articles/AV1-A-First-Look-127133.aspx

AV1 (libaom) Compression History

AV1 compression history

AV1 (libaom) Complexity History

fpm

AV1 complexity history

Debargha at ICIP 2018 (October 9, 2018)

[1] https://twitter.com/timse7/status/1049607841072459776

AV1 (libaom) Complexity History

fpm

AV1 complexity history

AV1 (libaom) Compression History

AV1 compression history

33

Jan Ozer on AV1 Encoding (March 3, 2019)

March 4, 2019 By Jan Ozer Contributing Editor Featured Articles

Good News: AV1 Encoding Times Drop to Near-Reasonable Levels

Then	Encoding Time (seconds)	Times Real Time
AV1	226,080	45,216
x265	289	58
LibVPx	226	45
x264	18	4

	Encoding Time (seconds)	Times Real Time		
AV1	736	147		
x265	289	58		
LibVPx	226	45		
x264	18	4		

[1] https://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=130284

Concerns We Heard at NAB 2018

- "The bitstream isn't even frozen yet"
- <u>"We need broad deployment of hardware decoders before adoption"</u>
- "The reference encoder is too slow to be usable"
- "AV1 is not much better than HEVC"
- "There is no support for AV1 in XXX"
- "The broadcast space is slow to adopt new things"

Facebook Study (April 2018)

[1] https://www.texpion.com/2018/07/av1-vs-vp9-vs-avc-h264-vs-hevc-h265-2-psnr.html

BBC R&D Study (June 28, 2018)

Comparison of recent video coding technologies in MPEG and AOMedia

Posted by Marta Mrak, Andre Seixas Dias on 28 Jun 2018, last updated 4 Sep 2018

Average bit rate savings of AV1 and JEM

[1] <u>https://www.bbc.co.uk/rd/blog/2018-06-comparison-of-recent-video-coding-technologies-in-mpeg-and-aomedia</u>

BBC Subjective Evaluation at IBC 2018 (Sept 2018)

	AV1 vs HM				JEM vs HM			
Sequence	PSNR BD-rate Y	PSNR BD-rate Cb	PSNR BD-rate Cr	MOS BD-rate	PSNR BD-rate Y	PSNR BD-rate Cb	PSNR BD-rate Cr	MOS BD-rate
Book	2%	-15%	-22%	1%	-44%	-61%	-66%	-41%
Manege	0%	-10%	-8%	-9%	-36%	-44%	-41%	-37%
ParkDancers	-1%	-24%	-52%	-5%	-28%	-53%	-52%	-23%
Voiles	29%	-17%	-14%	14%	-39%	-63%	-56%	-19%
YoungDancers2	-6%	-11%	-23%	-34%	-38%	-65%	-63%	-45%
CrowdRun	2%	7%	11%	-9%	-25%	-30%	-26%	-42%
OldTownCross	15%	-37%	-30%	22%	-30%	-60%	-46%	-11%
ParkJoy	8%	22%	-17%	-19%	-19%	-20%	-17%	-32%
PedestrianArea	-1%	-4%	0%	-8%	-29%	-38%	-36%	-18%
RitualDance	-1%	-7%	-9%	3%	-29%	-34%	-38%	-32%
Average	5%	-10%	-16%	-4%	-32%	-47%	-44%	-30%
Encoding time	~106x				~5x			
Decoding time	~4x			~5x				

- Low-latency subjective evaluation: --passes=1 --lag-in-frames=0
- May not reflect current quality, evaluated on libaom-5f4f738e (2018-Jan-09)

[1] https://show.ibc.org/sites/default/files/An%20Overview%20of%20Recent%20Video%20Coding%20Developments%20in%20MPEG%20and%20AOMEDIA%20-%20Andre%20Dias.pdf

BBC Subjective Evaluation at IBC 2018 (Sept 2018)

	AV1 vs HM			JEM vs HM					
Sequence	PSNR BD-rate Y	PSNR BD-rate Cb	PSNR BD-rate Cr	MOS BD-rate	PSNR BD-rate Y	PSNR BD-rate Cb	PSNR BD-rate Cr	MOS BD-rate	
Book	2%	-15%	-22%	1%	-44%	-61%	-66%	-41%	
Manege	0%	-10%	-8%	-9%	-36%	-44%	-41%	-37%	
ParkDancers	-1%	-24%	-52%	-5%	-28%	-53%	-52%	-23%	
Voiles	29%	-17%	-14%	14%	-39%	-63%	-56%	-19%	
YoungDancers2	-6%	-11%	-23%	-34%	-38%	-65%	-63%	-45%	
CrowdRun	2%	7%	11%	-9%	-25%	-30%	-26%	-42%	
OldTownCross	15%	-37%	-30%	22%	-30%	-60%	-46%		
ParkJoy	8%	22%	-17%	-19%	-19%	-20%	-17%		
PedestrianArea	-1%	-4%	0%	-8%	-29%	-38%	-36%		
RitualDance	-1%	-7%	-9%	3%	-29%	-34%	-38%		
Average	5%	-10%	-16%	-4%	-32%	-47%	-44%		
Encoding time		~10	06x	Old	versio	n, ~5	ل xō		111
Decoding time		~4	1x	likel	y brok	(en ~!	5x	017-12- 017-12- 017-12- 018-01-0	018-02-018-02-018-03-003-000-018-03-000-000-000-000-000-000-000-000-000

- Low-latency subjective evaluation: --passes=1 --lag-in-frames=0
- May not reflect current quality, evaluated or libaom-5f4f738e (2018-Jan-09)

[1] https://show.ibc.org/sites/default/files/An%20Overview%20of%20Recent%20Video%20Coding%20Developments%20in%20MPEG%20and%20AOMEDIA%20-%20Andre%20Dias.pdf

Moscow State University (SSIM - January 2018)

Moscow State University (SSIM - April 2019)

Moscow State University (SSIM - April 2019)

This ranks are based on quality results ONLY (not considering encoding speed). If we will perform complex analysis – the results will be the next:

moz+//a

- AV1 has extremely high encoding quality in approachable to other encoders and very low encoding speed due to lack of speed optimization.
- VP9 and x265 encoder have very close results (in speed and quality) and have a very good quality/speed balance for high-quality encoding
- sz265 has good quality results with comparative low encoding speed

The plot below shows overall quality scores for the encoders in our comparison (see Section D for a description of the integral-score computation method). First place in the quality competition goes to AV1, second place goes to VP9, x265, and sz265, and third place to sz264 and x264.

AV1 Encoder Ecosystem

- Open Source Encoders:
 - Google libaom [1]
 - Intel & Netflix SVT-AV1 [2]
 - Mozilla & Xiph rav1e [3]

https://aomedia.googlesource.com/aom/
 https://github.com/OpenVisualCloud/SVT-AV1
 https://github.com/xiph/rav1e

- Closed Source Encoders:
 - Two Orioles EVE for AV1
 - Socionext (FPGA offload)
 - NGCodec (FPGA intra only)
 - ATEME
 - Harmonic
 - Bitmovin (cloud encoder)
 - Visionular Aurora
 - Every hardware vendor in AOM
 - Probably more I don't know of

Concerns We Heard at NAB 2018

- "The bitstream isn't even frozen yet"
- "We need broad deployment of hardware decoders before adoption"
- "The reference encoder is too slow to be usable"
- "AV1 is not much better than HEVC"
- "There is no support for AV1 in XXX"
- "The broadcast space is slow to adopt new things"

AV1 is Everywhere

- ISO-BMFF [1]
- MP4 / MKV [2]
- TS [3]
- HEIF (aka AVIF) [4]
- RTP [5]
- FFmpeg [6]
- [1] <u>https://aomediacodec.github.io/av1-isobmff/</u>
- [2] https://github.com/Matroska-Org/matroska-specification/blob/master/codec/av1.md
- [3] https://code.videolan.org/videolan/av1-mapping-specs/blob/master/ts-carriage.md
- [4] <u>https://aomediacodec.github.io/av1-avif/</u>
- [5] <u>https://github.com/AOMediaCodec/av1-rtp-spec</u>
- [6] https://trac.ffmpeg.org/wiki/Encode/AV1

Concerns We Heard at NAB 2018

- "The bitstream isn't even frozen yet"
- "We need broad deployment of hardware decoders before adoption"
- "The reference encoder is too slow to be usable"
- "AV1 is not much better than HEVC"
- "There is no support for AV1 in XXX"
- "The broadcast space is slow to adopt new things"

AV1 on YouTube at IBC 2018 (September 17, 2018)

Youtube starts test with open royalty-free AV1 codec

September 17, 2018 by Jan Willem Aldershoff

- Launched with just 14 videos [3]
- Most popular encoded as AV1 first

More video for less data

The AV1 video codec provides advanced compression, bringing you smoother streaming in HD and data savings for more video on the go.

Because it is new, streaming AV1 in HD requires a powerful computer, and only some videos have AV1 available at this time. Choosing to stream AV1 in SD will use AV1 up to 480p, and VP9 for higher formats.

<u>https://www.myce.com/news/youtube-starts-test-with-open-royalty-free-av1-codec-85094/</u>
 <u>https://www.youtube.com/testtube</u>
 <u>https://www.youtube.com/playlist?list=PLyqf6gJt7KuHBmeVzZteZUlNUQAVLwrZS</u>

AV1 + Opus Content on YouTube at IBC 2018

Firefox 65

• Non-Windows behind flag: media.av1.enabled = true

Chrome 70

• Enabled by default on desktop platforms and Android

Edge 18

• Enabled with AV1 Video Extension from Microsoft Store

AV1 software decoders on billions of devices in October 2018!!!

AV1 Update - Demuxed (October 18, 2018)

Steve Robertson Machine Learning for ABR in production Steve Robertson (Google / YouTube)

- "Project will be streaming 1 Tb / sec AV1 by the end of the month"
- "Small fraction of YouTube's egress, sign that it is working for us in production"
- "Not a cost effective choice at this time"
- "We are doing this to make sure people know we are **deadly serious about AV1** and are committed to its success"

AOM Members - NAB 2018 (33)

AOM Members - Today (42)

Android Q with AV1 + Opus (March 13, 2019)

Android Q Reaches Public Beta With Improved Privacy, Opus/AV1 Support, ANGLE On Vulkan

Written by Michael Larabel in Google on 13 March 2019 at 03:57 PM EDT. 46 Comments

Google today rolled out their first public beta/development release of the upcoming Android Q that will be formally released in the second half of 2019.

Android Q is introducing new privacy protections, new foldable screen support given the recent wave of foldable devices, the ability to share shortcuts, improved peer-to-peer/internet connectivity, new WiFi performance and low latency modes, support for the AV1 video codec, support for audio encoding using Opus, a native MIDI API, and other enhancements.

AOM Members - Mobile OS

Samsung Joins AOMedia (April 3, 2019)

Samsung Joins the Alliance for Open Media Board of Directors

on April 3, 2019

Samsung recently announced that it has joined the Alliance for Open Media (AOMedia), a nonprofit organization formed by leading internet and media technology companies which intends to define and develop open standards for media compression and delivery over the web.

Audio

[1] <u>https://news.samsung.com/global/samsung-joins-the-alliance-for-open-media-board-of-directors</u>

moz!//a

Share

AOM Members - Mobile Devices

Concerns We Heard at NAB 2018

- "The bitstream isn't even frozen yet"
- "We need broad deployment of hardware decoders before adoption"
- "The reference encoder is too slow to be usable"
- "AV1 is not much better than HEVC"
- "There is no support for AV1 in XXX"
- "The broadcast space is slow to adopt new things"

Concerns We Heard at NAB 2018

- "The bitstream isn't even frozen yet"
- "We need broad deployment of hardware decoders before adoption"
- "The reference encoder is too slow to be usable"
- "AV1 is not much better than HEVC"
- "There is no support for AV1 in XXX"
- "The broadcast space is slow to adopt new things"

Conclusion

• AV1 adoption is happening, and faster than we expected last year

Save the Date!

- Mozilla co-hosting Video Technology Conference
 - Where: New York City
 - When: Wednesday, June 26th 2019
 - Who: Video technology enthusiasts (no sales pitches)
- Will make a formal announcement immediately following NAB
 - Sponsor opportunities available
 - Contact Nathan Egge <<u>negge@mozilla.com</u>>

Questions?

Considering that video and images make up about 80% of all internet traffic, the impact of how things get encoded is pretty big. Even a modest 1% BDR gain tool translates into about 20 EB of traffic yearly currently, or 20,000,000,000 GB.

Steinar Midtskogen (Cisco)