
Into the Depths: The Technical Details Behind AV1

Nathan Egge <negge@mozilla.com> Mile High Video Workshop 2018 July 31, 2018

North America Internet Traffic

82% of Internet traffic by 2021 <u>Cisco Study</u>

Alliance for Open Media (AOM)

Goals of the Alliance:

- Produce a video codec for a broad set of industry use cases
 - Video on Demand / Streaming
 - Video Conferencing
 - Screen sharing
 - Video game streaming
 - Broadcast
- Open Source and Royalty Free
- Widely supported and adopted
- At least 30% better than current generation video codecs

AV1 Coding Tools Overview

- New high-level syntax
 - Easily parsed sequence header, frame header, tile header, etc
- New adaptive multi-symbol entropy coding
 - Up to 16 possible values per symbol
- New coefficient coder
 - LV-MAP exploits multi-symbol arithmetic coder
- More block sizes
 - Prediction blocks from 128x128 down to 4x4
 - Rectangular blocks
 - 1:2 and 2:1 ratios (4x8, 8x4, etc)
 - 1:4 and 4:1 ratios (4x16, 16x4, etc)
 - Transform sizes from 64x64 down to 4x4
 - Includes rectangular transforms 1:2, 2:1 and 1:4, 4:1 ratios
- More transform types
 - 16 possible transform types
 - Row and column chosen from: IDTX, DCT, DST, ADST
- More references
 - Up to 7 per frame (out of a store of 8)
- Spatial and temporal scalability
- Lossless mode
- Chroma subsampling
 - o 4:4:4, 4:2:2, 4:2:0, monochrome

- More prediction modes
 - o Intra
 - 8 main directions plus delta for up to 56 directions
 - Smooth HV modes interpolate across block
 - Palette mode with index map up to 8 colors
 - Chroma from Luma intra predictor
 - Intra Block Copy
 - o Inter
 - Expanded reference list (up to 7 per frame)
 - Allow ZEROMV predictor, which isn't always (0,0)
 - Compound mode
 - Inter-Intra prediction
 - Depends on difference between pixel prediction
 - Smooth blending limited to certain intra modes
 - Wedge codebook (Inter-Inter, or Inter-Intra)
 - Warped motion local affine model with neighbors
 - Global motion affine model across entire frame
- Loop filtering
 - Deblocking filter
 - Constrained Directional Enhancement Filter
 - Loop restoration
- Film grain synthesis

AV1 Coding Tools Overview

- New high-level syntax
 - Easily parsed sequence header, framewader, the header
- New adaptive multi-symbol entropy ad.
 - Up to 16 possible values per vn ol -
- New coefficient cc
 - LV-MAP exploits reliti-symbol withmetic coder
- More block sizes
 - Prediction blocks from 128x128 dciencia 4x4
 - Rectangular blocks
 - 1:2 and <u>2:1</u> rat s (4x ε 1, etc
 - 1:4 a.... 1 rat s (4x¹, 10, , etc)
 - Transform sizes from 64. Jown to 4x4
 - Includes rectar ular transforms 1:2, 2:3 nd 4, 4 ratios
- More transform types
 - 16 possible transform type
 - Row and column choin from: ILTY JCT, DST, ADST
- More references
 - Up to 7 per frame (out of a store of 8)
- Spatial and temporal scalability
- Lossless mode
- Chroma subsampling
 - 4:4:4, 4:2:2, 4:2:0, monochroine

- More prediction
 - D Intra

etc

- s main rections plus delta for up to 56 directions والمعامة 8 main
- Smooth V modes interpolate across block
- Palette mode with index map up to 8 colors
- Chroma from Linantra predictor
- Intra Blo ()p)
- Inter
 - Sanded Strence list (up to 7 per frame)
 - A. E ZEROMV predictor, which isn't always (0,0)
 - Inter-Intranreciptio.
 - Depends of difference between pixel prediction
 - Sn oth blending limited to certain intra modes
 - We je Odebook (Inter-Inter, or Inter-Intra)
 - Warped motion local affine model with neighbors
 - Global motion affine model across entire frame
- Loop filtering
 - Deblocking filter
 - Constrained Directional Enhancement Filter
- Loop restoration
- Film grain synthesis

AV1 Coding Tools Overview

- New high-level syntax
 - Easily parsed sequence header, fram
- New adaptive multi-symbol entropy
 - Up to 16 possible values per vn
- New coefficient cc
 - LV-MAP exploits relations bol and
- More block sizes
 - Prediction blocks from 128x128 doine in 4x
 - Rectangular blocks
 - 1:2 and 2:1 rat s (4x ε 1, etc
 - 1:4 a... 1 rat s (4x1 , 10-
 - Transform sizes find 64, Joy
 - Includes rectargular transformation
- More transform types
 - 16 possible transform type
 - Row and column chosen from: N
- More references
 - Up to 7 per frame (out of a store of 8)
- Spatial and temporal scalability
- Lossless mode
- Chroma subsampling
 - 4:4:4, 4:2:2, 4:2:0, monochron.e

More prediction
 Intra

heade

CT, DST, ADST

etc

der, i

vetion -- prus delta for up to 56 directions modes interpolate across block with index map up to 8 colors

Ex anded Strence list (up to 7 per frame) ZEROMV predictor, which isn't always (0,0)

preciptio.

or s

Vector of the solution of the

- **L**oop filtering
 - Deblocking ilter
 - Constrained Directional Enhancement Filter
 - Loop restoration
- Film grain synthesi

Full AV1 Specification: https://aomediacodec.github.io/av1-spec

ΔΥ

Profiles

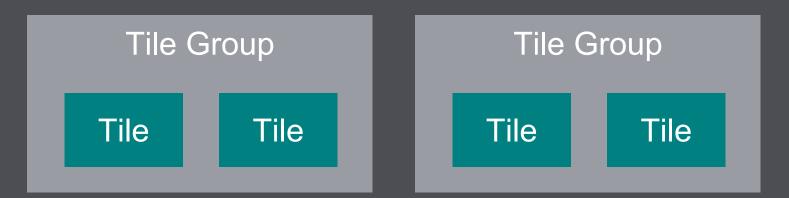
Main

- 8-bit and 10-bit
- 4:0:0 and 4:2:0 chroma subsampling

High

- 8-bit and 10-bit
- 4:0:0, 4:2:0 and 4:4:4 chroma subsampling Professional
 - 8-bit, 10-bit and 12-bit
 - 4:0:0, 4:2:0, 4:2:2 and 4:4:4 chroma subsampling

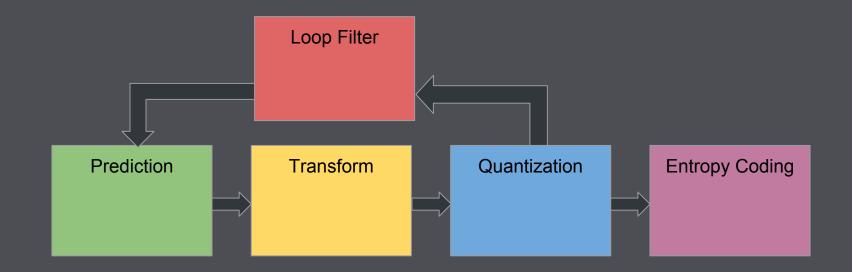
Levels


For a given sequence, place limits on:

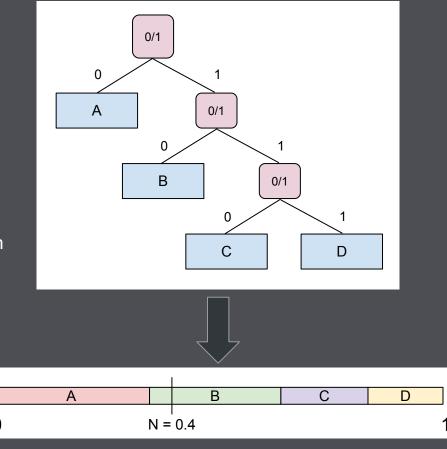
- frame size (width and height)
- maximum picture size (area in samples)
- maximum display rate (samples per second)
- maximum decode rate (samples per second)
- average rate (Mbits per second)
- high rate (Mbits per second)
- maximum number of tiles
- maximum number of tile columns

High Level Syntax

Sequence Header


Frame Header

Colors and HDR


- Colorspace, color matrix, transfer functions, etc. can be encoded directly in the bitstream
 - Chroma siting and levels too
- HDR metadata can be added through the Metadata OBU syntax

Codecs 101

Multi-Symbol Entropy Coder

- Arithmetic Range Coder
- Code both binary symbols and multi-symbols
 - Alphabet sizes up to 16
- Improve EC throughput with high rate streams
 - Instead of 1 bit per cycle, decode up to 4
- Use 8x9 -> 17 bit multiples when coding
 - 15-bit CDFs shifted down before multiply
 - Adaptation still occurs with 15-bit precision
- Fast adaptation mode for first few symbols

Transform Types

VP9 has two types: DCT and ADST

- Chosen independently for horizontal / vertical directions
- Signaled once per prediction block

AV1 has four types:

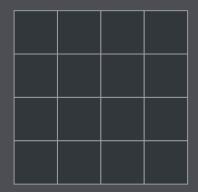
- DCT
- ADST
- FlipADST (mirror image of ADST)
- Identity (no transform)

Still chosen independently for horizontal / vertical directions

- Total of 16 possible combinations
- Not all combinations allowed in all contexts (e.g., no FlipADST for intra) Signaled once per transform block

Prediction Block Structure

10 different splitting modes

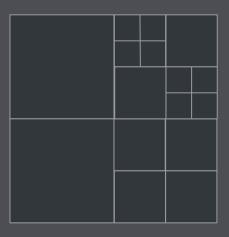


• Last (4-way) split is recursive

Transform Block Sizes: Intra

Signaling mostly unchanged from VP9

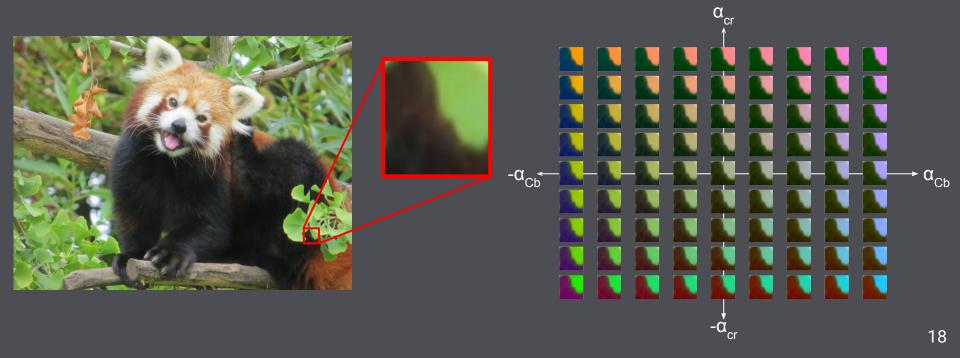
- One transform size per prediction block
- For rectangular prediction blocks, largest rectangular transform that fits allowed, e.g., 1:2, 2:1, 4:1 and 1:4 ratio transform blocks
- Transform sizes go up to 64x64
 - Only upper left 32x32 region allowed to be non-zero



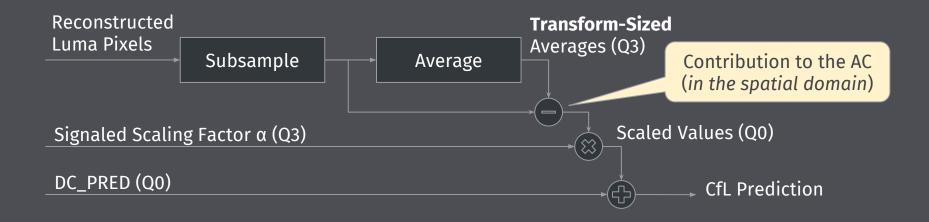
Transform Block Sizes: Inter

Signaling completely different from VP9

- Four way quad tree splitting
- For rectangular prediction blocks, largest rectangular transform that fits also allowed
- Available sizes same as intra



Intra Prediction Modes


- More directional modes
 - 8 main directions plus delta for up to 56 directions
 - Not all modes available at smaller sizes
- Smooth H + V modes
 - Smoothly interpolate between values in left column (resp. above row) and last value in above row (resp. left column)
- Paeth predictor mode
- Palette mode
 - Color index map with up to 8 colors
 - Separate palettes for Y, U and V planes
 - Palette index coded using context model for each pixel in the block
 - Pixels predicted in 'wavefront' order to allow parallel computation
- Chroma from Luma

Chroma from Luma Intra Prediction

- Predict chroma channel based on decoded luma
 - Encoder signals best correlation constants: α_{cb} and α_{cr}
- Good for screen content or scenes with fast motion

Chroma from Luma Algorithm

UV Mode Selection Example (https://goo.gl/6tKaB8)

CFL_PRED 17%

TM_PRED 7.98%

SMOOTH_PRED 4.85%

Ohashi0806shield.y4m QP = 55 moz://a

Awesome for Gaming (Twitch dataset)

	BD-Rate (%)								
	PSNR	PSNR-HVS	SSIM	CIEDE2000 ¹	PSNR Cb	PSNR Cr	MS SSIM		
Average	-1.01	-0.93	-0.90	-5.74	-15.55	-9.88	-0.81		

https://arewecompressedyet.com/?job=no-cfl-twitch-cpu2-60frames%402017-09-18T15%3A39%3A17.543Z&job=cfl-inter-twitch-cpu2-60frames%402017-09-18T15%3A40%3A24.181Z

Notable Mentions

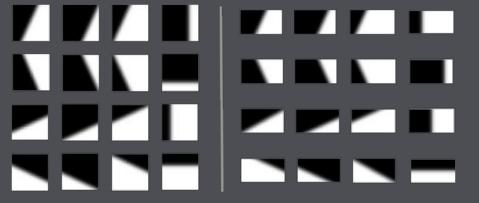
	BD-Rate (%)								
	PSNR	PSNR-HVS	SSIM	CIEDE2000 ¹	PSNR Cb	PSNR Cr	MS SSIM		
Minecraft	-3.76	-3.13	-3.68	-20.69	-31.44	-25.54	-3.28		
GTA V	-1.11	-1.11	-1.01	-5.88	-15.39	-5.57	-1.04		
Starcraft	-1.41	-1.43	-1.38	-4.15	-6.18	-6.21	-1.43		

Minecraft MINECRAFT_10_120f.y4m

GTA V GTAV_0_120f.y4m

Starcraft STARCRAFT_10_120f.y4m

Motion Vector Coding


- Each frame has a list of 7 previous frames to reference (out of a pool of 8)
 Can reference non-displayed frames, so many possible structures
- Construct list of top 4 MVs for a given reference / reference pair from neighboring area
- Complicated entropy coding scheme

Compound Prediction

(1/2, 1/2) weights like VP9

Inter-inter compound segment

- Pixel weights depend on difference between prediction pixels Inter-intra gradual weighting
 - Smoothly blends from inter to intra prediction
- Only a limited set of intra modes allowed (DC, H, V, Smooth) Wedge codebook (inter-inter or inter-intra)

Rectangular Codebook

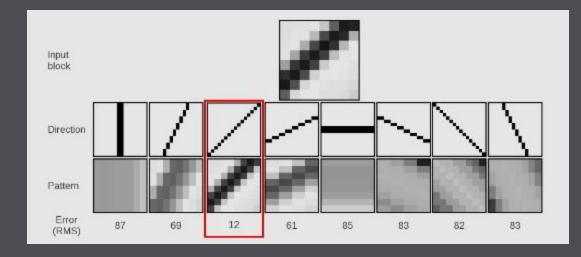
Global Motion

- Defines up to a 6-parameter affine model for the whole frame (translation, rotation and scaling)
- Blocks can signal to either use the global motion vector or code a motion vector like normal
 - If global motion isn't used, default is 0,0

Warped Motion

- Use neighboring blocks to define same motion model within a block
 - Decomposed into two shears with limited range
 - Similar complexity to subpel interpolation

Segmentation IDs


- Up to 8 possible segment labels (3 bits)
 - Value set per label, e.g., filter strength, quantizer, reference frame, skip
 - Signaled per prediction block, down to 8x8
- Can either predict segment ID temporally or spatially (chosen per frame)
 - Spatial prediction
 - Used to change quantizer/loop filter strength
 - Useful for adaptive quantization, e.g., for activity masking
 - Useful for temporal RDO, e.g., MV-tree
 - Temporal prediction
 - Useful for predicting temporal properties, e.g., skip

Deblocking Filter

- Similar to what is in VP9
- Changed the order edges are filtered to make hardware easier
- More flexible strength signaling
 - Separate H + V strength for luma
 - Separate C_h and C_r strengths for chroma
 - Can be adjusted on a per-super block basis
- NB: deblocking filter crosses tile boundaries

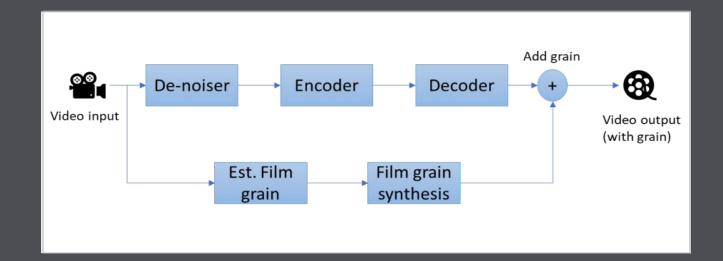
Constrained Directional Enhancement Filter (CDEF)

- Merge of Daala's directional deringing filter (DERING) and Thor's constrained lowpass filter (CLPF)
 - Both encoder and decoder search for the direction that best matches
 - Primary filter run along direction, and secondary conditional replacement filter run orthogonally
 - Strength is signaled in the bitstream
- Results exceed both DERING and CLPF alone, as well as applying DERING + CLPF sequentially

Loop Restoration

- Enhanced and simplified loop filters from VP10
- Two filter choices per superblock
 - Separable Wiener filter with explicitly coded coefficients
 - Self-guided filter
- Runs in a separate pass after CDEF
 - Showed best metrics of any approach tested
 - Uses deblocking filter output outside of superblock boundaries to minimize line buffers

Spatial and Temporal Scalability


- Each frame can have a spatial_id and a temporal_id
 - When spatial_id = 0 and temporal_id = 0 it is called a base layer
 - When spatial_id > 0 and temporal_id > 0 it is called an enhancement layer
- Idea is that decoder will simply display the frames from the highest layer
 - Higher layer frames can reference lower layer frames
- Designed to be used by a special "Selective Forwarding Unit" server that hands out the appropriate scalable layer to a client

Frame Super-Resolution

- Not actually super-resolution
- Instead
 - Code at reduced resolution
 - Run deblocking filter and CDEF, but not Loop Restoration filter
 - Upsample with simple upscaler
 - Run Loop Restoration filter at full resolution
- Only horizontal resolution reduction allowed
 - Simplifies hardware (no new line buffers)
- Allows for gradual bitrate scaling

Film Grain Synthesis

- Grain parameters signaled per frame
- Synthesized film grain applied after decoding (not in loop)
- Could be applied using GLSL + PRNG based texture

AOM Members

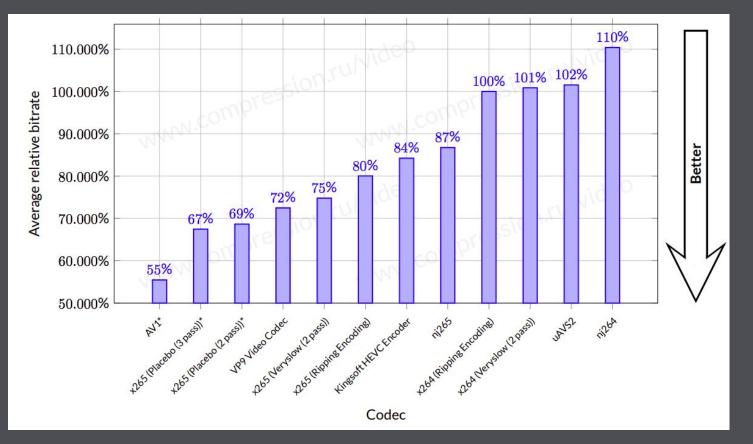
AOM Members / Hardware

Designed for Hardware Implementations

Hardware members involved from the very beginning Feedback incorporated into a number of tools

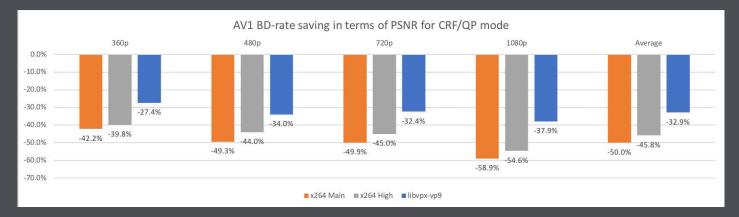
- Per symbol probability adaptation
- Smaller multipliers in entropy coder
- Single pass bitstream writing
- Fewer line buffers in CDEF and LR
- Only allow horizontal scaling for super-resolution

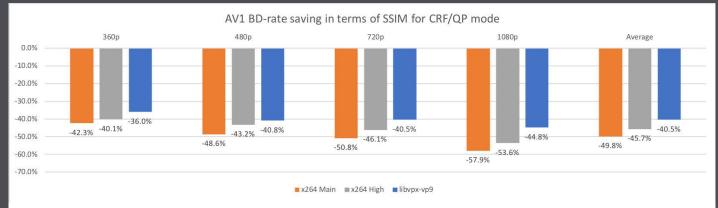
AOM Members / Real-Time Conferencing


Designed for Low-Latency

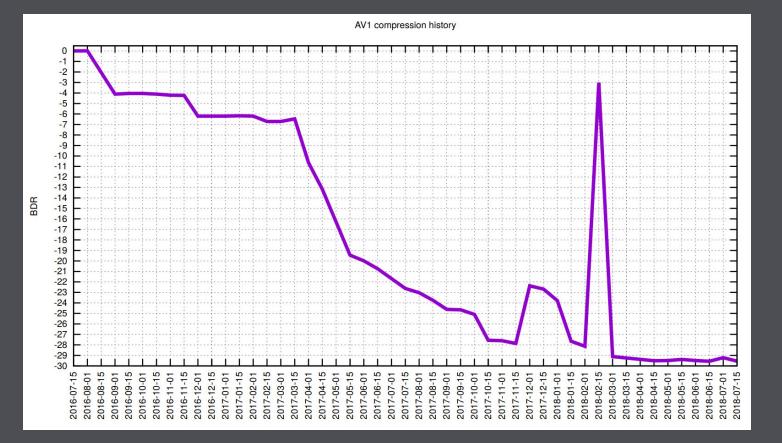
Per symbol adaptation replaces symbol counts in VP9 Can write bitstream with subframe latency Removed signaling from frame header that forced whole frame buffering

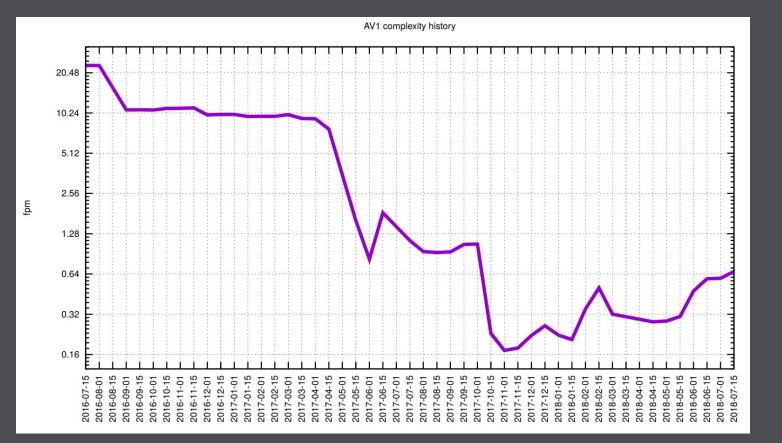
Designed for Broadcasters?


- Decoder rate model
 - Guarantee buffer size
 - Limit the use of alt-ref's to ensure decodability
 - Verifiable (See Annex E of the spec document)
- Support for AV1 coming to hardware
 - Smart TV's will want to play Netflix, Hulu, YouTube, etc.
- Start with AV1 in the broadcasting stack
 - Can leverage industry investment in hardware, software, tooling, etc.
 - Easier to expand into streaming market


Moscow State University (SSIM - June 2017)

moz://a


Facebook Study (April 2018)



https://code.fb.com/video-engineering/av1-beats-x264-and-libvpx-vp9-in-practical-use-case/

AV1 Compression History

AV1 Complexity History

Questions?